XELTEK INC

SuperPro® 3070 Handbook

Xeltek

12/15/2010

Contents

Contents	0
Outline	2
What is SP3070	2
General functions	2
Hardware functions	2
Software functions	2
System requirements	2
Standard package of the programmer	2
Hardware installation	3
Connection of ISP cable with the target system	3
Description of connection port	3
Definition of several common interfaces	5
Examples for connection of target system	6
SP3070 requirements for target system	7
Attentions on pin connection	7
Precautions for power:	9
Precautions for the design with reset generator	9
Examples of common problems	11
Other matters needing attention	12
Examples for connection of several common serial communication protocols	13
M25P64	13
24C04	13
S9S08AW16	13
Installation of software	13
Quick start	14
User interface of application software	14
Steps for creating a project	15
Select device	15
Load data into buffer	15
Set options	16
Save project	16
Operate SP3070 on I3070	17
Detailed description of functions	19
Browse menu	19
	19
	20
	20
Load project	21
Save project	21
Select device	22
Ar layer Buffor	23
Checksum	23
	27
Device Configuration Word	27
Edit automatic processing command	28
	20
Tool bar	20
Main toolbar	32
Information bar	32
Device information	32
Buffer information	33 22
File information	33
Statistical Information Bar	33
Clausical IIICIII allo Dal	55

Outline

What is SP3070?

SP3070 for Agilent's Medalist i3070 Series 5 is a cost effective programming module for memories, micro-controllers and programmable logic devices.

General functions

- Programming speed is adjustable to be compatible with target board, length of ISP cable, etc.
- Supports online (USB2.0 high-speed) and offline mode simultaneously.
- Supports ISP programming of devices with I2C, SPI, UART, BDM, MON, MW, JTAG, CAN, ICC, RS232 and other serial protocols.
- Over-current and ESD protection.
- Includes stable and reliable design, such as R & D, mass production, in-system programming, etc.

Hardware functions

- ISP cable accommodates I2C, SPI, UART, BDM, MON, MW, JTAG, CAN, ICC, RS232 interfaces.
- Cable driver circuit supports target voltage level of 1.5-5V and is also ESD protected.
- USB 2.0 interface for PC connection and management of project files on SD card.

Software functions

- Supports 5,000+ serial devices.
- Very fast programming rate selectable in three gears: high, medium and low. Adaptable to different cable lengths and load features of user boards.
- Supports dynamic buffer function (each chip burns different contents including: serial number, MAC address, sensor calibration etc.). The interface is of open type.
- File format on SD card: FAT16, FAT32.
- Operates up to 12 programmers through one USB HUB. Chips and files can be different.

System requirements

Minimum requirements for the system are as follows: a computer, desktop or portable computer compatible to Pentium or above; a universal serial bus interface to USB2.0 standard; Windows XP/Vista operating system; CD-ROM; hard disc with at least 1G free space; Agilent Medalist i3070 Series 5 with 08.00p Software Release.

Standard package of the programmer

The standard package includes the following items:

- Programmer
- Connecting cable for USB interface
- Installation software- one CD-ROM
- User registration form

Hardware installation

Connection of ISP cable with the target system

Description of connection port

ISP connection port contains the signal ends required for programming of the target system. The connection port is divided into group J1 and group J2:

The programming interfaces required for most serial protocols are contained in Port A, e.g. SPI, I2C, JTAG, UART, BDM etc. The pins of this port are defined as follows:

Pin #	Signal Name	Description
1	VIO	Target Chip Voltage Level Input
2	DIO1	Digital input 1
3	DIO2	Digital output 2
4	DIO4	Digital output 4
5	RSV2	Reserved digital output 1
6	DIO3	Digital input 3
7	DIO0	Digital input/output 0
8	DIO7	Digital output 7
9	GND	Ground connect with chip ground
10	TPIN	target system power on detection(input)
11	NC	No Connect

12	DIO5	Digital output 5
13	NC	No Connect
14	RSV3	Reserved digital output 2
15	NC	No Connect
16	GND	Ground connect with chip ground
17	NC	No Connect
18	TPOUT	3.3V voltage output
19	NC	No Connect
20	ETXD	TX(output, RS-232 levels)
21	NC	No Connect
22	ERXD	RX(input, RS-232 levels)
23	GND	Programmer Electrical Ground
24	ECTS	CTS(input, RS-232 levels)
25	GND	Programmer Electrical Ground
26	ERTS	RTS(output, RS-232 levels)
27	+12V	Programmer Power Supply Input(+12V DC)
28	ECANL	CAN Bus difference signal for low
29	+12V	Programmer Power Supply Input(+12V DC)
30	ECANH	CAN Bus difference signal for high

Notes:

 SP3070 has a working mode called "mass production." Once the programmer detects that the target board is ready and the ISP signal arrives, it immediately starts the functional operation defined by AUTO without keyboard operation. TPIN and TPOUT in the port are provided for this purpose. TPOUT supplies high level and TPIN is level detection input line. Short-circuit them on the target board. Once ISP signal is applied to the test point, TPIN immediately detects high level, and AUTO command sequence can be started.

2. The input value of VIO should keep identical with IO working voltage of the chip. Otherwise, it might not work or could even damage the chip.

The pins of J2 are defined as below:

Pin #	Signal Name	Description
1	Spare(NC)	No Connect
2	USB VBUS	USB VBUS
3	Spare(NC)	No Connect
4	USB GND	USB Ground
5	Spare(NC)	No Connect
6	USB Data +V	USB difference signal for high
7	Spare(NC)	No Connect
8	USB Data -V	USB difference signal for low
9	AGND	Programmer Analog Ground

10	Spare(NC)	No Connect
11	NC	No Connect
12	Spare(NC)	No Connect
13	NC	No Connect
14	Spare(NC)	No Connect
15	AGND	Programmer Analog Ground
16	NC	No Connect
17	AGND	Programmer Analog Ground
18	NC	No Connect
19	NC	No Connect
20	NC	No Connect
21	NC	No Connect
22	NC	No Connect
23	AGND	Programmer Analog Ground
24	NC	No Connect
25	GND	Programmer Electrical Ground
26	NC	No Connect
27	Plug-in card detect	Short with Pin29
28	Universal Clear	Clear signal input for card
29	Plug-in card detect	Short with Pin27
30	Plug-in card reset	Reset signal input for card

J2 pins can be connected according to corresponding relationships of these pins.

Definition of several common interfaces

In order to facilitate use by customer, we have defined several common interfaces corresponding to the ISP port (this definition only contains communication protocol pins. For the specific wiring method, please refer to the hint on the software of the host computer). The pin correspondence table is as follows:

Pin #/Name	SPI	I2C	JTAG	BDM	UART
VIO					
DIO1					CTS
DIO2	SPIMOSI		TDO		TXD
DIO4	SPICLK	SCL	тск		RTS
RSV2					
DIO3	SPIMISO		TDI		RXD
DIO0		SDA		BDM	
DIO7			TMS		
GND					
TPIN					
NC					
DIO5			TRST	RESET	

NC			
RSV3			
NC			
GND			
NC			
TPOUT			
NC			
ETXD			
NC			
ERXD			
GND			
ECTS			
GND			
ERTS			
+12V			
ECANL			
+12V			
ECANH			

Note: SDA and SCL are reserved for test and are not provided for the user.

Examples for connection of target system

Before programming the target device, you must learn the function of each pin of the device, read the instructions on programming the device with ISP programmer, know the hardware programming interfaces on the target board, and confirm compliance of the target board design with ISP requirements (see the section "ISP requirements for the target system" for detail).

The programming operation steps are as follows:

1. Search the type of chip to be operated in the ISP programming software and view the operation hint.

2. Connect the signal lines (including GND) to corresponding interfaces of the ISP programmer with the target board.

3. If the above "mass production" function is to be used, TPIN and TPOUT signal lines should also be connected.

4. It is recommended that the power of the target board is supplied independently for those with high power consumption and multiple power systems. If it is confirmed that the power is supplied by the programmer ISP cable, then VCC (sometimes also need Vpp) should be connected.

5. The independent power supplier of the target board switches on the power.

6. Operation functions for running the programmer chip.

Take AT Mega48 as an example: According to the operation hint, we should make a line connection in relation to the table below:

ISP Programmer		Target system
Pin #	Signal Name	Connection
1	VIO	3.3V

2	DIO1	No connect
3	DIO2	MOSI
4	DIO4	SCK
5	RSV2	No connect
6	DIO3	MISO
7	DIO0	No connect
8	DIO7	No connect
9	GND	No connect
10	TPIN	No connect
11	NC	No connect
12	DIO5	RESET
13	NC	No connect
14	RSV3	No connect
15	NC	No connect
16	GND	GND
17	NC	No connect
18	TPOUT	No connect
19	NC	No connect
20	ETXD	No connect
21	NC	No connect
22	ERXD	No connect
23	GND	GND
24	ECTS	No connect
25	GND	GND
26	ERTS	No connect
27	+12V	+12 Power Supply
28	ECANL	No connect
29	+12V	+12 Power Supply
30	ECANH	No connect

SP3070 requirements for target system

Take into account the particularity of ISP at the design stage of the target board. This point is often neglected by many people. They think that it is enough as long as the control signal lines are connected to IC's corresponding pins.

Attentions on pin connection

1. All pins required during the programming should have interface terminals or measuring points in order to ensure that SP3070 can be connected to them conveniently.

2. In order to prevent the required programming pins from incurring signal jumps during programming, the PCB circuit board where the pins are located must not be connected with other circuits.

Below are some common circuit connection methods. We will describe their merits and demerits one by one.

The design in the figure above makes the programmer difficult to test the pin signals and to connect with the programming pins.

All the programming pins in the above diagram have a test point. Therefore, it is easy to measure the signal valves. But since there are no connecting terminals for programming, it is still not easy to connect with the programmer.

The pins required for programming in the above diagram are all connected to the interface terminals. Hence, it is very easy to test and burn record.

Precautions for power:

Though SP3070 can provide programming power (1.8-18V, 5W), it is not sufficient enough to make the target board work normally. Therefore, we recommend using the self-contained power of the target board. If the self-contained power of the target board or working voltage (VCC) and programming voltage (VPROG) is needed during the programming, all target boards must ensure their correct programming voltages. This is determined by the chips that need to be programmed and other circuits. Please refer to the programming manual of this chip for detail.

To verify the programming chip with different voltage, the PCB board must be able to provide working voltage with a different range of accuracy.

Precautions for the design with reset generator

Take caution if SP3070 needs to use the RESET pin, and the RESET generator has already been provided on the target board. The RESET generator may conflict with the actuation signal of the programmer. Below they are described one by one.

The connection of the reset generator in the diagram above conflicts with the Reset pin for programming. Be careful when the In-System programmer drives Reset pin.

The connection in the diagram above eliminates pin conflicts by adding a jumper, but such an operation is not very convenient.

The connection in the diagram above eliminates the problem of pin conflict through adding a resistance of large value. But we still need to pay attention to the effect of pull-up/pull-down resistance on the input level signal of the RESET pin.

The connection in the diagram above is relatively reasonable. It settles the conflict problem through a pull-up resistance and allows the equipment to work well. It is important to note that after detecting an external reset signal, some Resetters will automatically have a delay in order to meet the needs of external equipment.

Examples of common problems

There are three problems in above diagram: ① LED lamp will extract large current from ISP programmer; ② external input signal on MISO pin conflicts with SP3070 programming signal; ③ capacitance on MOSI pin may affect the value of level signal output from this pin.

This is the improved circuit diagram. It can be seen from the diagram that the addition of a buffer before LED can alleviate limitation of SP3070 on output current. The series resistances before MISO can eliminate signal conflict. Changing the connecting position of capacitance eliminates the effect of filter capacitance on the level signal.

Other matters needing attention

- The watchdog circuit in the programming process can be triggered normally.
- If the bootloader of the chip needs use during programming, it must be stored inside the chip before the ISP programmer works. The exception is when the bootloader has been stored in the mask ROM inside the chip or set by factory. For example, if there is a bootloader set by factory inside the chip, but if the space where bootloader stored by this chip is erased or modified by ISP, it is impossible to perform other ISP operation. In addition, some chips need special bootloader which makes them work well.
- If the chip contains an encryption fuse operation or special function inhibit bit, it may contain an online programming inhibit function. Therefore, the lasting time in programming may result in the ISP function being disabled. Please refer to the chip manual for details.
- If the serial working cable for ISP is too long, this may also disable the ISP from working normally. In this case, try selecting medium and low speed in the software.
- Some equipment manufacturers have indicated whether this chip has an ISP function or not in the name of the chip. For example, some manufacturers use NIS to indicate that the device doesn't support ISP function while IS is used to indicate that it does.

Examples for connection of several common serial communication protocols

M25P64

M25P64 is a large-capacity serial ROM programmed through SPI protocol and made by STM Company. In this example, the chip packaging mode adopted is SO16, the schematic connection diagram is shown as below:

DIO5	HOLD	С	DIO4
VPROG1	VCC	D	DIO2
DIO7	S	VSS	GND
DIO3	0	WP	VPROG0
	×		

24C04

ST 24C04 is a universal serial ROM made by STM company, and programmed through I2C protocol. In this example, the chip packaging mode adopted is SO8. The schematic connection diagram is shown as below:

DIO2	A0	VCC	VPROG1
DIO5	A1	WP	GND
DIO7	A2	SCL	DIO4
GND	VSS	SDA	DIO6
	122	2211	

S9S08AW16

S9S08AW16 is a HCS08 series low power consumption and high-performance 8-bit controller widely used for consumer electronics manufactured by Freescale Company. This chip is programmed through BDM serial protocol. In this example, the chip packaging mode adopted is LQFP44. The schematic connection diagram is shown as below:

Installation of software

If you use SP3070 based on the USB port for the first time, the content of this chapter will help you to correctly install the application software for the programmer and connect programmer hardware. USB equipment is a kind of plug & play equipment. In the first time installation, Windows will invoke "add new equipment wizard" and scan all available INF files, attempting to find the appropriate driver.

Quick start

This chapter will help you understand the whole process of chip burn-recording operation from beginning to the end. The content includes:

- User interface of application software
- Steps of create projects

Before you are ready to operate the burn-recording device of the programmer, please make sure that you have properly installed the programmer, and that the computer has successfully communicated with the programmer.

User interface of application software

🔀 SUPERPRO 3070 - Agilent	
File(F) Project(P) Device(D) Option(O)	Help(H) 1
🔁 🗋 🔁 🛍 🖉 4	ا الم الم الم الم الم الم الم الم الم ال
Information	DEMO 01
Device Information	
Manufacturer: ADVANCE-GROUP Device: AF93C46(08bit) Package: 4 Algorithm: 93_ALL_1	Welcome to SUPERPRO programmer! Current time is:Fri Nov 20 08:59:57 2009 Demo Mode Current Device:ADVANCE-GROUP,AF93C46(08bit)
Buffer 😞	3)
StartAddr: 0 EndAddr: 0X7F 5 Checksum: 000007F80H	
File	
File name: 6 Checksum: 000000000H	
Statistics Information	
ID Succ Failure Total	
01 0 0 0	
7 Reset Countdown	

- 1. Menu bar
- 4. Device information bar
- 7. Statistic window
- 2. Main toolbar
- 5. Buffer information bar
- Log window
 File information bar

info@xeltek.com

Steps for creating a project

Select device

Click "select device" on the device menu bar or whe tool bar. A dialogue box for selecting a device pops up.

First, select the device type. For example: E/EPROM, BPROM, DSRAM, PLD or MCU. Then select manufacturer and device name, and click the 'OK' button. You can also key in the device name in the Search edit box to narrow down the selections.

Devices List: Selection		X
Search: Manufacturers AAAAA ACT ADWANCE-GROUP AKM ANACHIP-ICT APLUS-FLASH ATC ATMEL CATALYST CERAMATE EXEL FAIRCHILD FMD FREESCALE FUJITSU HOLTEK HYNIX HYUNDAI This device is supported by:SP3	Devices AF93C46(08bit) AF93C46(16bit) AF93C56(08bit) AF93C56(16bit) AF93C66(08bit) AF93C66(16bit) AF93C66(16bit) AF93C86(16bit) AF93C86(16bit) AF93C86(16bit) AF93C86(16bit) AF93C86(16bit) AF93C86(16bit)	Types • ALL • EPROM • BPROM • DSRAM • PLD • MCU

Note: SP3070 does not support BPROM, DSRAM.

Load data into buffer

Programming device is a process that burns the data in the buffer into the storage unit of the chip according to the manufacturer's requirements. There are two ways to load data into the buffer. 1) Read from file

Select "Load" from "File" on the main menu, select appropriate file, format, and type in "Load File" dialogue box. After confirmation, the data file is loaded. The user can check the data in the buffer edit window.

2) Read data from master slice

After selecting the device, place the master slice, and click "Read" on the operation tool bar. Then, the data in the chip will be copied into the buffer. At this time, the user can enter the buffer edit window to check if the data is correct or not. This data can be stored in a disc for future use. Attention: Some devices do not have a read-out function, or have been encrypted so that data cannot be read out from the master slice.

Set options

1) Operation options:

- ID Check: Checks ID of device before chip burning.
- Automatic Increment: when the user selects chip burning, he writes the serial number in the form of accumulative numbers at the designated position so that each chip has a different mark number after burning.
- Change the start and end address of the area of the device that needs to be burn-recorded.
- Verify Mode selection. Select specific voltage value of VCC for verification in order to verify correctness of chip burn-recording.

•

2) Edit Auto. In the operation tool bar, all devices have a basic batch process operation "Auto". Its function is to execute other operation functions of devices in the sequences that are already edited. Generally, Edit Auto mode is selected for all devices.

Erase Blank check Program Verify Security or Protect

3) Dev. Config. For the chip with configuration words, the words must be set before burning the device to ensure that the burned chip can work in the user's target system. The configuration words of some devices are contained in the user's data file and are automatically filled in the buffer of configuration characters upon import of data files.

4) Dev. Info. After selecting the device, the dialogue box for device information pops up to display the important information of a relevant device. Some devices have special requirements for burning, or the algorithm for burning has special convention. The user should adjust the operation steps or buffer data after carefully reading the requirements or conventions. When the adapter is needed to support burning, the corresponding information is displayed (SP3070 shows how to connect SP3070 programmer and some instructions.)

5) Production mode. The programmer checks the socket status all the time. Once the chip is placed completely, it automatically starts AUTO command without a manual key push to facilitate the user to batch burn the chips (SP3070 production mode can only be used in offline mode).

Save project

Select "Save Project" on the "Project" menu bar, or click so the tool bar, then the dialogue box for project loading pops up

Save project	×
Project name:	
Input password:	
Confirm password:	
Project description(No more than 500 characters):	
	<u>_</u>
	~
OK Cancel	

Select the project file for saving. Input the password and description if necessary. After clicking "OK", the project is generated in the specified directory.

Operate SP3070 on I3070

Please create the project file first (in this example, it's named "24C128.prj"). Write bt-basic command file, and then run this file in bt-basic console, SP3070 will program the device. The command file is as follows:

```
dim Info$[40]
```

Itesthead is 1 Ifixture lock

!SETUP

load board vacuum well a is 2,3 faon powered cps !Start PROGRAMMING xdload "ISP01" xdconnect "ISP01" xdcall "ISP01","Ping", Var, Rtn\$;"1" !check isp01 xdcall "ISP01","LoadPrj", Var, Rtn\$;"24C128_T.p

```
xdcall "ISP01","LoadPrj", Var, Rtn$;"24C128_T.prj"
xdcall "ISP01","Run", Var, Rtn$;"Program"
print "loop start"
loop
xdcall "ISP01", "GetStatus", Var, Info$
print" get status:",Info$,"var:",Var
if Info$ = "set_vpp" then
VPP = Var/10
print "msg:setvpp"; VPP !print debug msg
xdcall "ISP01", "SetVxx", Var, Rtn$
end if
if Info$ = "set_vcc" then
VCC = Var/10
```

```
xdcall "ISP01", "SetVxx", Var, Rtn$
    print " done:setvcc"; VCC
  end if
 if Info$ = "on_vpp" then
    sps 1, VPP, 2
    xdcall "ISP01", "OutVxx", Var, Rtn$
    print " done:onvcc"; VPP
  end if
 if Info$ = "on_vcc" then
    sps 2, VCC, 2
    xdcall "ISP01", "OutVxx", Var, Rtn$
    print " done:onvcc"; VCC
  end if
 if Info$ = "off_vpp" then
    sps 1, 0, 2
    dps 1
    xdcall "ISP01", "OutVxx", Var, Rtn$
    print done:offvpp"
  end if
 if Info$ = "off_vcc" then
    sps 2, 0, 2 ! vcc power supply is enable
    dps 2
    xdcall "ISP01", "OutVxx", Var, Rtn$
    print done:offvcc"
  end if
 if Info$ = "algo_ok" then
    print " algo ok"
    goto End_Loop
  end if
 if Info$ = "algo_fail" then
    print " algo fail"
    goto End_Loop
  end if
 if Info$ = "scale" then
    Ivalue is percent of scale information
    print "Percent complete = "; Var; " %"
 end if
end loop
End_Loop:
print "loop over"
xddisconnect "ISP01"
xdunload "ISP01"
print "all over"
```

Detailed description of functions

Browse menu

Load file

Select "Load File" on the menu bar, or click — on the tool bar. The dialogue box for file loading pops up.

Load File		X
Buffer:	EEPROM V 1	
File Name:		2
File Type:	Binary 😽 3	
File Mode:	Normal 💙 4	
Buffer Address:	0 5	
File Address:	0 <u>6</u>	
🕑 Buffer clear on	data load 7 Fill data: FF	
Calculate File's	checksum when loading? 8	
	OK Cancel	

- 1. Data buffer: the data buffer of the device is divided into one or more areas. If there are several data buffers displayed after selecting the device, explain the meaning of the data buffers according to the names of the buffers and the data manual.
- 2. File name: designate the file with loaded data. The user can select the file by file dialogue box which pops up when the button "…" is clicked, or from file history record which can be browsed when the drop-down arrow is clicked. Note: After selecting the file, it is still needed to select the appropriate type of data file. It can then be ensured that the data is loaded correctly.
- 3. Type of file: include Binary, Intel Hex (extension) etc.
- 4. Loading mode:

<Normal>: the whole file is loaded.

<Even>: First byte of every two bytes is taken and the second byte is abandoned.

<Odd>: Second byte of every two bytes is taken and the first byte is abandoned.

<1st byte of 4>: First byte of every four bytes is taken and the rest three bytes are abandoned.

<2nd byte of 4>: Second byte of every four bytes is taken and the rest three bytes are abandoned.

<3rd byte of 4>: Third byte of every four bytes is taken and the rest three bytes are abandoned.

<4th byte of 4>: The fourth byte of every four bytes is taken and the rest three bytes are abandoned.

<1st 2_byte of 4>: The first two bytes of every four bytes are taken and the rest two bytes are abandoned.

<2nd 2_byte of 4>: The last two bytes of every four bytes are taken and the rest two bytes are abandoned.

- 5. Buffer address: the start address where data is loaded into the buffer.
- 6. Offset address of file: some types of files have non-zero start addresses (data offset address). Thus, it may be required to input the file start address when loading the file. Please input correct address data in the Edit box. An incorrect file offset address will result in filling in the buffer head by FF (or incorrect data). An incorrect big offset address will result in data flooding or system failure.
- 7. Check if the buffer is to be cleared when loading the file. If the user selects "Yes", then he must indicate which value is used to erase the buffer.
- 8. Check if the check sum is calculated when loading the file.

Save file

Select "Save File" on the menu bar, or click under the tool bar, then the dialogue box for file save pops up.

Save File		X
Buffer:	EEPROM 💙 1	
File Name:		2
File Type:	Binary 💙 3	
Buffer Address:	0 4	
Data Size:	1000 5	
	OK Cancel	

- 1. Data buffer: select the buffer data to be saved
- 2. File name: select to save the buffer data into a specific file type.
- 3. Type of file: include Binary, Intel Hex (extension), Motorola S record, Tektronix Hex, etc.
- 4. Buffer address: starts to save the data from the start address specified in the buffer.
- 5. Data size: specify the size of the data to be saved.

Exit

Close the programmer software and return to the operating system.

Load project

Select "Load Project" on the "Project" menu bar, or click and the tool bar, then the dialogue box for project loading pops up.

Load project			
Project name:			
Input password:			
Project description			
			<u>^</u>
			~
Same mode for all	modules		
	ОК	Cancel	

After selecting the project and inputting the correct password, the project is loaded.

If the "all modules adopt the same mode" is chosen, this project will be loaded into all the modules.

Save project

Select "Save Project" on the "Project" menu bar, or click dialogue box for project loading pops up.

Save project			
Project name:			
Input password:]	
Confirm password:]	
Project description(No mor	e than 500 c	haracters):	
			<u>^</u>
			\sim
		Cancel	

Project name: specify the name of project to be saved.

Password: for data security, the user can add a password in the project file.

File description: you can add simple description information for your project (not exceeding 1000 bytes).

Note: the suffix name of project files must be .prj.

Select device

Select "Device Select" on the menu bar, or click for device selection pops up.

Search: Manufacturers Devices AAAAA ACT ACT AF93C46(16bit) ACT AF93C56(08bit) AKM AF93C56(08bit) ANACHIP-ICT ANACHIP-ICT ANACHIP-ICT AF93C66(16bit) AP3C56(08bit) AF93C66(16bit) AF93C66(16bit) PLD ATC ATC ATC ATC ATREL EXEL FAIRCHILD FMD FREESCALE FUJITSU HOLTEK HYNIX HYNIX HYNIX	Devices List: Selection		
HOLTEK HYNIX HYUNDAI	Search: Manufacturers AAAAA ACT ADVANCE-GROUP AKM ANACHIP ANACHIP-ICT APLUS-FLASH ATC ATMEL CATALYST CERAMATE EXEL FAIRCHILD FMD FREESCALE FUJITSU	Devices AF93C46(08bit) AF93C46(16bit) AF93C56(08bit) AF93C56(16bit) AF93C66(08bit) AF93C66(16bit) AF93C86(16bit) AF93C86(16bit)	Types ALL
	HOLTEK HYNIX HYUNDAI		

The dialogue box for "Device" includes controls such as the manufacturer browse box and the device name browse box. Type 'select button' and OK and Cancel buttons as well as Search Edit box etc. How do you select a device?

- Select device type among the type select buttons. There are five major types: E/EPROM (EPROM, EEPROM, FLASH etc.), PLD, B/PROM, DRAM/SRAM, MCU. If you are not sure, you can select "ALL".
- Assign a manufacturer name in the manufacturer browse box.
- Assign device name in Device Name browse box and just press the "OK" button.

The name printed on the chip may include parameters such as speed, temperature, package etc. When you select a name that is not identical to the name in the dialogue box of "Device", you should neglect these parameters or ask for help.

Use of Search edit box: it may be very inconvenient to directly select the device due to a large number of devices and difference in names of chip. In this case, we can use the Search edit box to help the selection. As long as you input several key characters, the number of devices can be greatly narrowed. This facilitates fast search of the device. For example: when you want to find the 89 series single-chip microcomputer, input characters "89" in the Search edit box. All the devices containing characters "89" will be listed. The software is sensitive to the sequence of characters "89" when making a search, but it will neglect presence of other characters in the box. For example: the character strings "819" and "DA8S9" will be listed since they meet the requirement, while characters "98" will be neglected since it does not.

Note: Some chips cannot be used only after authorization is given, after selecting this chip, the log window will remind "this chip needs authorization!"

XPlayer

XPlayer is a special programming tool mainly for CPLD series chips produced by ACTEL, ALTERA etc. As long as the customer provides corresponding STP or JAM file (such files can be generated using such design tools as ISE, Quartus II etc.), the corresponding device can be programmed.

Select "XPlayer" on the "Device" menu bar, then the dialogue box pops up.

XPlayer	
File Name :	
Type STAPLE PLAYER	VCC(V) VPP(V) 3.3 3.3
ОК	Cancel

File name: select the needed STP or JAM file. Type: 1.STAPLE PLAYER; 2. DIRECT C

	Туре	
	STAPLE PLAYER	~
9	STAPLE PLAYER	
	DIRECT C	

The universality of STAPLE PLAYER is comparatively better than DIRECT C, while its speed is lower than the latter.

VCC: working voltage of chip

VPP: programming voltage provided by the programmer

Buffer

2

Select "Buffer" on the menu bar of "Device", or click on the tool bar, then the dialogue box for buffer edit pops up.

HEX/ASCII data buffer The data width of each unit is 8 bits or 16 bits according to the chip.

Edi	t Buffer																				\mathbf{X}
	Buffer Clear a	t IC (Chan	ae 🔽	Buf	fer C	lear (at Da	ta Load 🗍	Bul	fer S	iave (when	Exit				OK		Cancel	
	DD OM				-				_	-											
																					_
A	ddress:000000	000H			Rano	e:00	0000	000H	-000000Ff	=FH			Ch	neck S	5um:(0000F	F000H	Ca	culate		
	ADDRESS								HEX									ASC	II		^
	000000000	FF	FF	FF	FF	FF	FF	FF	FF-FF	FF	FF	FF	FF	FF	FF	FF					
	000000010	FF	FF	FF	FF	FF	FF	FF	FF-FF	FF	FF	FF	FF	FF	FF	FF					
	000000020	FF	FF	FF	FF	FF	FF	FF	FF-FF	FF	FF	FF	FF	FF	FF	FF					
	000000030	FF	FF	FF	FF	FF	FF	FF	FF-FF	FF	FF	FF	FF	FF	FF	FF					=
	000000040	FF	FF	FF	FF	FF	FF	FF	FF-FF	FF	FF	FF	FF	FF	FF	FF				• • •	
	000000050	FF	FF	FF	FF	FF	FF	FF	FF-FF	FF	FF	FF	FF	FF	FF	FF			• • • •	• • •	
	000000060	FF	FF	FF	FF	FF	FF	FF	FF-FF	FF	FF	FF	FF	FF	FF	FF			• • • •	• • •	
	000000070	FF	FF	FF	FF	FF	FF	FF	FF-FF	FF	FF	FF	FF	FF	FF	FF	• • • • •	• • • •	• • • •	• • •	
	00000080	FF	FF	FF	FF	FF	FF	FF	FF-FF	FF	FF	FF	FF	FF	FF	FF	• • • • •	• • • •	• • • •	• • •	
	000000090	FF	FF	FF	FF	FF	FF	FF	FF-FF	FF	FF	F.F.	FF	F.F.	FF	FF	• • • • •	• • • •	• • • •	• • •	
	UAUUUUUUUU	FF	FF	F.F.	FF	FF FF	FF	FF	FF-FF	FF FF	FF	F.F.	FF	F.F.	FF	FF	• • • • •	• • • •	• • • •	• • •	
		F F	FF	F F	FF	FF	F F	FF		FF	F F	F F	F F	F F	FF	FF	• • • • •	• • • •	• • • •	• • •	
		77 55	77 55	rr rr	rr rr	77 55	77 55	77 55	rr-rr rr rr	77 55	77 55	77 55	77 55	ר ר ד ד	rr vv	rr rr		• • • •	• • • •	• • •	
		rr rr	rr rr	rr rr	rr rr	rr rr	rr rr	rr FF	rr - rr FF - FF	rr rr	rr rr	ר ר ד ד	rr rr	ר ר ד ד	rr FF	rr rr		• • • •	• • • •	• • •	
		чч чч	7 7 7 7	नग	11 77	ग ग न न	<u>ग</u> न न	7 T 7 T	77-77 77-77	ग ग न न	<u>ग</u> न न	<u>ग</u> न न	ग ग न न	<u>ग</u> न न	11 77	<u>ग</u> न न		• • • •	• • • •	•••	-
	00000010																				
	Locate		Co	ру			Fill		Searc	h) [s	earch	Nex	t		Radi	× (Swa	ар		
																					_

Edit Buffer
Buffer Clear at IC Change Buffer Clear at Data Load Buffer Save when Exit OK Cancel EEPROM
Address:000000000H Range:00000000H-00000007FH Check Sum:00000FF00H Calculate
LDDRESS HEZ ASOIT
000000008 FFFF FFFF FFFF FFFF FFFF FFFF
000000010 FFFF FFFF FFFF FFFF FFFF FFFF
000000020 FFFF FFFF FFFF FFFF FFFF FFFF
000000028 FFFF FFFF FFFF FFFF FFFF FFFF
000000030 FFFF FFFF FFFF FFFF FFFF FFFF
000000040 FFFF FFFF FFFF FFFF FFFF FFFF
000000048 FFFF FFFF FFFF FFFF-FFFF FFFF FFFF FF
000000058 FFFF FFFF FFFF FFFF FFFF FFFF
000000060 FFFF FFFF FFFF FFFF FFFF FFFF
000000070 FFFF FFFF FFFF FFFF FFFF FFFF
000000078 FFFF FFFF FFFF FFFF FFFF FFFF
Locate Copy Fill Search Search Next Radix Swap

Range: displays the address and end address of this buffer (with character width as the unit).

Address: displays the position of current cursor Address:000000000H

Note: this address is the address with the word width of chip as the unit. **Checksum:** see "calculation of check sum' for details.

Locate: move the cursor to the designated position of the buffer (with character width as the unit)

Locate 🛛 🔀	
Locate Address:	
٥	
OK Cancel	

Note: the address to be filled is hex numerical value. Below is the same.

Copy:

Сору		X
Start Address: End Address:	0	OK Cancel
Copy to:	0	

Copy the designated area of buffer to another position (with word width as the unit)

Fill:		
Fill		
Start Address:	0	ОК
End Address:	7F	Cancel
Fill Data(Hex):	FFFF	

Fill the designated area of buffer with the filling value (with word width as the unit)

Search:

Search	
Text to search Hex ASCII	OK Cancel
Direction O Downward O Upward	O Whole

Search the data in the buffer through hex system or ASCII. The user can select the search way (search forward from current position, search backward from current position and search backward from beginning of the buffer).

Search next: search next address that meets the condition according to the search way the user selects.

Switching: switch over the display format of address in the buffer (hex system or decimal system).

Exchange:

Swap	×	
Width 16Bits(2Bytes) 32Bits(4Bytes) 64Bits(8Bytes) 	OK Cancel	
Assume the data at ad	dress 0-10(he	x system) of data buffer is:
12 34 56 78 90 AA BB	CC – DD EE I	FF 11 22 33 44 55
I ne character width th	at can be seled	cted is:
16 bits(2 bytes), the da	ata after excha	nge is as follows:
34 12 78 56 AA 90 CC	; BB – EE DD 1	11 FF 33 22 55 44

16 bits(2 bytes), the data after exchange is as follows: 34 12 78 56 AA 90 CC BB – EE DD 11 FF 33 22 55 44 32 bits(4 bytes), the data after exchange is as follows: 78 56 34 12 BB CC 90 AA – 11 FF EE DD 55 44 33 22 64 bits(8 bytes), the data after exchange is as follows:

CC CC AA 90 78 56 34 12 - 55 44 33 22 11 FF EE DD

Checksum:

Select "Checksum" in the "device" menu bar. The dialog box of checksum verification and calculation pops up.

Checksum calcula	tion 🛛 🔀
Buffer: <mark>1</mark>	EEPROM
Type: 2	Default 🗸
Start Address: 3	0
End Address: 4	7F
User Define 5	
Checksum: <mark>6</mark>	FF00
C	alculate Cancel

When the type of data in data buffer is Data (HEX/ASCII data), the default verification and calculation method is to add up all the data from beginning to end with byte as the unit. To meet the user's special requirements, he can totalize the data in part of the addresses in a specified way.

- 1. Specify the buffer where the checksum is to be calculated.
- 2. Way for checksum calculation (sum of bytes by default)
- 3. The start address of checksum calculation (in bytes)
- 4. The end address of checksum calculation (in bytes)
- 5. Special method for checksum calculation, once choosing this, above selection will be disabled.
- 6. Checksum calculation result

Device information

Select "device information" on the "Device" menu bar or so on the toolbar. The current device information will be displayed.

If there is no special information, the device information only displays the manufacturer name, device name, package, adapter and algorithm. This information can also be found in the information column on the left. Any additional content will be displayed according to different chip.

Device Configuration Word

Select "device configuration word" on the "Device" menu bar or we on the toolbar. The current device information will be displayed.

For the device with a configuration word, the configuration word must be set before burning the device in order to ensure the burned chip can work in the user's target system. The configuration words of some devices are contained in the user's data file and are automatically filled in the buffer of configuration characters upon import of data file. Some devices need manual setting.

Edit automatic processing command

Select "Edit Auto" in the "Device" menu or whe main toolbar, the dialogue box pops up:

Auto Edit		
Functions:	Auto:	
Program Read Verify Erase BlankCheck	Add Remove Remove All	
	OK Cancel	

On the toolbar of device operation, all devices have a basic "Auto" operation. This can perform other operation functions of devices in the window of operation function items in the edited sequence, like processing batch. Open the "Edit Auto" dialogue box. All the operation function items of this device are displayed in the list on the left side of the dialogue box, operation function items, and execution sequence which execute the "Auto" in the "Auto" list box on the right side.

Add: Add operation function items from function list to auto list (it can also be added by double clicking this item).

Delete: Remove selected function item from auto list (it also can be deleted by doubleclicking the item).

Clear All: Delete all function items in the auto list.

Operation options

Select "Operation option" in the "Device" menu or in the main toolbar, the following dialogue box pops up:

General options

Operation (Option		X
Â		Basic Settings	
		User working-voltage(V) 5.0	User Working-level(V) 3.8
General		Mass Time O	
		Pull-up resistor	Clock Frequency(MHz)
	=		
Butter		Verify	Speed
. 5		 Once with Vcc 	💽 High
		○ Twice with Vcc+-%5	◯ Middle
Dupamic		○ Twixe with Vcc+-%10	OLow
Buffer			
	~		
			OK Cancel

General Options include:

User's working voltage and working level.

User sets working voltage and level according to the actual condition of target board.

Production mode

If production mode is selected, the user should specify the delay time (required stabilization time after placing the chip).

The production mode is only valid under offline state.

Pull-up resistance

Clock frequency

Verify mode (only applicable to the case that the power of target board is supplied by the programmer)

After burning (programming) a chip, it is necessary to verify the burned data. According to the manufacturer's programming data, voltage applied to VCC pin has the following changes when making verification:

First, verify the data with VCC(\pm 5%) or (\pm 10%), for example, for VCC=5.00V, then we can select VCC=5.00V to verify the data once, or use VCC=4.75V and VCC=5.25V to verify the data twice (\pm 5%) or use VCC=4.50V and VCC=5.50V to verify the data twice (\pm 10%).

Second, verify the data using the minimum verification voltage (MinVcc) and the maximum verification voltage (MaxVcc). The two voltage values referred above are supplied by the manufacturer.

Speed

The user can decide the programming speed himself and can choose one of three speeds, i.e. high, medium and low (varies with chip).

Buffer options

Operation (Opti	on			
	^	EEPROM	1		
		Chip Size:80(16bits)			
General		Start address			
		End address 7F			
Buffer					
Dynamic Duffer	-				
burrer					
	×				
				ОК	Cancel

The user can select to burn a part of the chip, which is applicable to most part of E/EPROM (FLASH) devices.

Serial number setting (dynamic buffer)

Operation ()pti	on			\mathbf{X}
General	^	SN Mode:	Disable V Disable General User Define		
Buffer	≡				
Dynamic Buffer					
	~			ОК	Cancel

Some applications require writing different content to local areas of the chip such as, the serial number of the product, MAC address etc. These are collectively called 'serial number'. This software has provided two solutions. One is the standard increment method and the other is the user-define method. The software for the former generates the serial number by automatic increment on the previous serial number. The format is fixed and it can meet general requirements. The serial number of the latter is generated by the user-define software, therefore, it has a very big freedom.

Operation (Opti	on	X
	^	SN Mode: General	
General		Start address 0 Buffer EEPROM 💙	
		End address 4	
Buffer	≡	Step 1 OPEcimal	
		Initial Value	
Dynamic		Direction	
Burrer		From High to Low From Low to High	
		OK Car	icel

The user needs to fill the start and end address, step length and initial value. The user can select which buffer is to be incremented and how to increase (format, step and direction).

Note 1: What is reflected initially is the current value. If the user wants to change the serial number to be burned during the burning process, he should change the initial value. Note 2: The format of initial value must be correct. When the type is non-ASCII, the

format of initial value must be correct. When the type is non-ASCII, the format of initial value is "XX XX XX". When the type is ASCII, the format of initial value is "XXXXX". If the format is not correct, it will be considered as 0.

SN Mode:	User Define	
SN's File:		
Dll File:		
	OK	Cancel

User-define mode: The user needs to provide the serial number file and dll called by the software. The serial number file needs to be generated correctly according to a certain format

Statistic setting

Operation (Opti	ion	×
General	^	Program	
		Read	
		Verify	
Buffer		Erase	
		BlankCheck	
Dynamic Buffer		Count will take effective if you do the operation which has been set in "Count Option" or you do Auto and Auto contains all the operations set in "Count Option"	
Count	*		
			el

When burning the chip, the software will do statistics of programming according to the user's setting. Statistical method:

> Count will take effect if you do the operation which has been set in "Count Option". Or you can do Auto and Auto, which contains all the operations set in "Count Option"

Tool bar

Main toolbar

- 1. Open file
- 5. Edit buffer
- 4. Save project 7. Device information
- 10. Operation Option
- 8. Device Configuration Word 11. Help
- 3. Load project 6. Select chip 9. Edit Auto 12. About XELEK

Information bar

Device information

Device Information
Manufacturer: ATMEL
Device: ATMEGA48
Package:
Algorithm: MEGA48I

The device information bar shows the basic information of the device. If the device has

special information, you need click "Dev.Info" option on "devices" menu bar or option on tool bar.

Buffer information

The buffer information bar shows start address, end address and checksum of main chip buffer.

File information

File	۲
File name:	
Checksum: 000000000H	

It shows the current loaded file name and file checksum (whether to calculate checksum or not is decided by user himself).

Statistical Information Bar

Statistics Information						
ID	Succ	Failur	e Tota	^		
01	0	0	0			
02	0	0	0	=		
03	0	0	0			
04	0	0	0			
05	0	0	0			
-06	Π	0	Π	× 1		
<			>			
Reset Countdown						

Reset: Clear success and failure etc. to zero, and cancel countdown setting (countdown number is -1)

Countdown:							
	Count Dwon Set 🔀						
	Total:	-1					
	ОК	Cancel					

When the countdown reaches -1, it indicates that the countdown setting has been cancelled. Note: The statistic mode needs to be set in "count" found in "operation option".